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FOREWORD
------- -- -- - - - - - - - -- - - - - - --------------------

This is the Phase 1 Final Report of the Scheduling Language

and Algorithm Development Study performed by Martin Marietta

Corporation, Denver Division, under Contract NAS9-13616. The pur-

pose of this study was to conceive and specify a high-level com-

puter programming language and a program library to be used in

writing programs for scheduling complex systems such as the Space

Transportation System. This report is presented in three volumes

plus an appendix:

Volume I - Study Summary and Overview

Volume II - Use of the Basic Language and Module Library

Volume III - Detailed Functional Specification for the Basic

Language and the Module Library

Appendix - Study Approach and Activity Summary

Volume I summarizes the objectives and requirements of the

study and discusses the "why" behind the objectives and require-

ments. Unique results achieved during the study or unique fea-

tures of the specified language and program library are then de-

scribed and related to the "why" of the objectives and require-

ments. Finally, a description of the significance of study re-

sults, in terms of expected benefits, is provided.

Volume II summarizes the capabilities of the specified sched-

uling language and the program module library. It is written with

the potential user in mind and, therefore, provides maximum in-

sight. on how the capabilities will be helpful in writing scheduling
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programs. Simple examples and illustrations are provided in

Volume II to assist the potential user in applying the capabilities

of his problem.

The detailed functional specifications presented in Volume III

are the formal product of Phase 1. These specifications are written

as requirements for software implementation of the language and the

program modules, and are aimed at a specific audience.

A separate Appendix summarizes the analyses, describes 
the

approach used to identify and specify the capabilities required

in the basic language, and presents results of the algorithm and

problem modeling analyses used to define specifications for the

scheduling module library. The appendix is directed toward the

reader who is interested in how the study conclusions and results

were reached.
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1.0 INTRODUCTION

This Appendix to the Phase 1 Final Report of the Scheduling

Language and Algorithm Development Study contains three major

chapters in addition to this Introduction. Chapter 2.0 describes,

in general terms, the approach and organization of the study.

Chapter 3.0 documents analyses performed in the first six months

of the Phase 1 study by briefly summarizing the material pre-

sented in the two volumes of the First Interim Report issued in

January 1974. The analyses performed in the second part of the

Phase 1 Study to produce the functional specifications for the

scheduling language and module library and to perform implementa-

tion feasibility, are documented in Chapter 4.0. These analyses

were performed in the period between 1 January 1974 and 5 Novem-

Sber 1974.
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2.0 STUDY APPROACH

The approach to the functional specification of the schedul-

ing language, PLANS (Programming Language for Allocation and Net-

work Scheduling), and the module library used a mix of problem

analyses and language design activities. Three major tasks are

referred to in this report. Task 1 dealt with the development of'

the basic language features, and the analysis of implementation

options; Task 2 developed methods to describe or model an oper-

ational system to be scheduled; and Task 3 identified mathematical

and logical strategies for solving scheduling problems. Tasks 2

and 3 effort identified functional requirements for the basic

languageand appropriate software modules to enhance the capabil-

ity of the analyst to address realistic problems. In addition,

Tasks 2 and 3 served to verify the adequacy and efficiency of the

trial language by assessing its functional compatibility with

either problem modeling or algorithm applications. Thus, the

three tasks worked in an iterative fashion to evolve language-

related capabilities that are highly relevant to practical prob-

lems. This approach is illustrated conceptually in Fig. A-1.

In the first six months of the study, the general scheduling

problem was analyzed from the functional point of view, using a

broad range of representative problems. The objective in that time

period.was to identify and evaluate language features that would

satisfy the functional requirements and meet the design goals of

(1).usability by a problem analyst and (2) insensitivity to a

problem alteration.

Preceding page blank A-3



Generate Trial "Code" Evaluate

Language Functional ( Representative Trial

Capabilities Programs Language

Analyze Real Problems and Solution Methods

to Determine Functional Requirements

Figure A-I Iterative Approach to Functional Specification

In the second part of the Phase 1 Study, the Task 1 emphasis

was on development of precise syntactic and semantic specifica-

tions for PLANS while the Task 2 and Task 3 efforts were directed

at functionally specifying a set of library routines that:

1) contained basic functionally-separable logic;

2) were usable in typical scheduling software; and

3) were free from imbedded decisions or assumptions that would

restrict the flexibility of their use.

The progress of the Phase 1 study has been guided by mile-

stones for each task. These milestones are shown in Fig. A-2.
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Although the study was segmented into discrete subtasks in

Fig. A-2, the high degree of integration required to move from

conceptual objectives to concrete functional specifications made

separation of the total activity into such well-defined subtasks

somewhat artificial. For purposes of documentation, in the first

Interim Report the subtasks of Fig. A-2 were grouped into major

activities; that same format is used here so the reader can better

perceive the integrated analyses that have been carried out. Table

A-i lists the major activities that are addressed in this appendix,

with reference to the milestone identifier of Fig. A-2.
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TASK 1 J A S 0 N D J F M A M J J A S 0

l.a Develop Scheduling Problem Model ma

l.b Develop Structure of Scheduling m

Problem Information

l.c Specify Individual Language
Functions

l.d Perform Paper Simulations
of Functional Programming

l.e Develop Language Syntax

l.f Specify Basic Semantics

l.g Assess Computer System Implica- m----

tions of Language

l.h Perform Paper Simulations to

Evaluation Suitability of
Language

l.i Document Language

l.j Prepare and Perform Demonstra-
tion of Language Features

l.k Evaluate Available Translator
Design. Option

1.Z Evaluate Tree Structure
Implementation Options

l.m Evaluate Disc Access/Update
Methods

l.n Verify Implementation Feasibility
of Automated Compiler Writing
Approach

Figure A-2 Milestones
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TASK 2 J'A S O N D J F M A M J J A S 0

2.a Survey and Summarize Related
Efforts

2.b Perform Preliminary Classifica- m
tion of Planning Problems

2.c Identify Operational System mm
Resources, States, and
Functional Flows

2.d Formulate Preliminary Operations m
Model Data Structure

2.e Formulate Initial Operations
Model Macrologic

2.f Refine Macrologic and Data
Structure

2.g Identify Preliminary Modules
within Macrologic

2.h Define Operations Model Data
Structure

2.i Define Module Functional
Requirements and Parameters

2.j Define Module and Algorithm
Interface Requirements

2.k Functional Specifications

2.k Evaluate Implementation
Feasibility of Elementary
Module Specifications

2.m Evaluate Implementation
Feasibility of High-Level
Module Specifications

2.n Evaluate Implementation
Practicality of a Generalized
Mixed Integer Program

2.o Review and Refine Allocation
of Functions between Library
Modules

2.p Establish Feasible Human
Scheduler/Computer Interface
Test Objectives

Figure A-2 (cont)
A-7



TASK 3 J A S ON D J FM AM J J A S 0

3.a Survey Existing Automated
Scheduling Techniques

3.b Evaluation of Automatic Selection
of Solution Strategies

3.c Survey Deposition Strategies

3.d Trial Problems *mm -.u

3.e Analyze Sensitivity Reduction =m M Un
Strategies

3.f Examine Language Applicability
to Heuristic Programming

3.g Examine Operations Model/Algorithm - m mmmm
Interfaces

3.h Identify Algorithm-Related
Libray Modules

3.i Specify Library Algorithm
Functional Capabilities

3.j Classify Solution Strategies
by Frequency of Use Problem
Size and User Interface Needs

3.k Identify Tests Required to
Automatically Select Solution
Strategies/Algorithm

3.k Assess Implementation
Requirements for PLANS Project
Scheduling Algorithms

3.m Select an Implementable Demon-
stration Problem and Identify
Capabilities, Input, and Output

3.n Evaluate Alternative Program
Architecture and Executive
Functional Design Logic

Figure A-2 (concZ)
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Table A-1 Major Activies and Study Milestone Identifiers

Appen-
dix Milestone

Major Activity Section Identifier Milestone Title

Analysis of Structure l.a Develop Scheduling Problem Model
of the General 3.1
Scheduling Problem l.b Develop Structure of Scheduling Problem Information

Formulation of Basic l.c Specify Individual Language Functions
Language Functional 3.2
Requirements

Synthetic Program- l.d Perform Paper Simulations of Functional Programming
ming for Trial 3.3
Language Evaluation

Assessment of Sched- 2.a Survey and Summarize Related Efforts
uling Operations
Model Requirements 3.4 2.b Perform Preliminary Classification of Scheduling Problems

2.c Identify Operational System Resources, Status, and
Functional Flows

Synthesis and Func- 2.d Formulate Preliminary Operations Model Data Structure
tional Evaluation 3.5
of Operations Model 2.e Formulate Initial Operations Model Macrologic

2.f Test and Refine Macrologic and Data Structure

3.g Examine Operations Model/Algorithm Interfaces

2.j Define Module and Algorithm Interface Requirements

Analysis of Solu- 3.a Survey Existing Automated Scheduling Techniques
tion Techniques
Applicable to Sched- 3.c Survey Decomposition Strategies
uling Problems 3.6

3.f Analyze Sensitivity Reduction Strategies

3.g Examine Language Applicability to Heuristic Programming

Identification of 3.b Evaluation of Automatic Selection of Scheduling Strategies
Language Requirements 3.7
via Solution of
Trial Problems 3.d Trial Problems

Formulation of Pre- 2.g Identify Preliminary Operations Model Modules within
limary List of Macrologic
Library Modules 3.8

3.h Identify Algorithm-Related Library Modules

Preliminary Assess- l.g Assess Computer System Implications of the Language
ment of Language 3.9
Translation Options

Development of i.e Develop Language Syntax
Mechanism for
Syntactic/Semantic 4.1 l.f Specify Basic Semantics
Specification

l.i Document Language

Evaluation of l.h Perform Paper Simulations to Evaluate Suitability of Language
Language Suitability 4.2
for Applications
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Tab e A-1 (concZ)

Appen-
dix Milestone

Major Activity Section Identifier Milestone Title

Evaluation of l.g Assess Computer System Implications of Language

Language Implementa-
tion Feasibility 4.3 l.k Evaluate Available Translator Design Option

1.1 Evaluate Tree Structure Implementation Options

l.m Evaluate Disc Access/Update Methods

l.n Verify Implementation Feasibility of Automated

Compiler Writing System

Development of 2.i Define Module Functional Requirements and Parameters

Contents and 4.4

Specifications 2.k Functional Specifications

for Library

Modules 3.f Examine Language Applicability to Heuristic Programming

3.g Examine Operations Model/Algorithm Interfaces

3.h Identify Algorithm-Related Library Modules

3.i Specify Library Algorithm Functional Capabilities

2.o Review and Refine Allocation of Functions between

Library Modules

Development of 2.d Formulate Preliminary Operations Model Data Structure

Standard Data 4.5

Structures 2.h Define Operations Model Data Structure

2.j Define Module and Algorithm Interface Requirements

Assessment of 2.Z Evaluate Implementation Feasibility of Elementary

Implementation Module Specifications

Feasibility of

Specified Modules 4.6 2.m Evaluate Implementation Feasibility of High-Level

Module Specifications

2.n Evaluate Implementation Practicality of a Generalized

Mixed Integer Program

3.k Assess Implementation Requirements for PLANS Project

Scheduling Algorithms

3.m Select Implementable Demonstration Problem and Identify

Capabilities, Input, Output

3.n Evaluate Alternative Program Architecture and Executive

Functional Design Logic

Assessment of 3.j Classifify Solution Strategies by Frequency of Use Problem

Methods for Automated 4.7 Size and User Interface Needs

Algorithm Application
3.k Identify Tests Required to Automatically Select Solution

Strategies/Algorithm

2.p Establish Feasible Human Scheduler/Computer Interface

Test Objectives
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3.0 SUMMARY OF MAJOR ACTIVITIES IN THE FIRST PART-OF STUDY PHASE 1

The major activities of the first six months of the study are

summarized in this chapter. It contains a brief description of

the conclusions reached and the analyses leading to those conclu-

sions. Numerous references are made to Volume II of the First

Interim Report, where detailed documentation is presented.

3.1 ANALYSIS OF STRUCTURE OF THE GENERAL SCHEDULING PROBLEM

The scheduling language study was initiated by defining a

basic structure within which language functional requirements

coul be developed. It was recognized that assignment of re-

sources for intervals of time is fundamental to the concept of a

schedule. Therefore, a schedule unit was defined as a collec-

tion of the assignments for specific resources. It naturally

follows that a schedule is a collection of schedule units. A

simple illustration of a schedule is given in Fig. A-3. Note that

a schedule unit contains assignment intervals that may be differ-

ent for each resource in the schedule unit. Precise definitions

of the terms "Schedule Unit," "Schedule," and "Scheduling Prob-

lem" are given in Section 3.1 of Volume II.

The analysis of the structure of scheduling problems contin-

ued with examining the information required for scheduling. The

objective was to find how this information was most naturally or-

ganized so appropriate data structures for a scheduling language

could be identified. The analysis revealed that all information

was hierachically related. Even though a single universal format

A-11



> Schedule Consisting of Two Schedule Units

Payload I I .

Schedule Unit

Payload Facility L. PREPARE
IPAYLOAD

Checkout Crew Schedule Unit
LAUNCH
PAYLOAD

Flight Crew

Vehicle

Time Line I I I I I

Fig. A-3 IllZZustration of the Structure of a Schedule



for scheduling problem information is not feasible, the conclu-

sion was that a hierarchical structure appears appropriate for

all problems. Thus, a basic data type had been identified for

PLANS.

3.2. FORMULATION OF BASIC LANGUAGE FUNCTIONAL REQUIREMENTS

Analysis of the structure of general scheduling problems was

followed by preliminary identification of the elementary func-

tional capabilities that a scheduling language should possess.

To appreciate the approach to defining functional require-

ments, it is necessary to understand a fundamental distinction

between the basic capabilities of a language and the capabilities

that the language lends to the programmer.. For example, it is

possible to integrate a function using FORTRAN, but integration

is not, in any sense, a basic language capability. The basic

FORTRAN capabilities of array manipulation, algebraic operations,

and iteration allow the programmer to perform integration. Only

if FORTRAN included something functionally equivalent to the com-

mand INTEGRATE FUNCTION X, would it be appropriate to say that

integration is a basic capability of FORTRAN.

The principal task associated with design of PLANS during the

first six months of this study was to extract a list of underly-

ing elementary operations that must be performed by single lan-

guage statements (or even by part of a statement).
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The basic language characteristics identified for PLANS are

described in detail in Section 3.3, Volume II of the First Interim

Report. The basic data type identified is the hierarchical set

structure. Although intervals have a special place in scheduling

problems and were originally identified as a second data type,

subsequent analyses showed that intervals could be handled with-

out difficulty within the tree structure and by specifying a small

number of interval subroutines. Thus, specification of the hier-

archical structure as the only required data type provides logi-

cal simplicity and considerably greater economy of implementation

than would result from a variety of data types. An illustration

of a hierarchical set structure is given in Fig. A-4. PLANS must

have the capability to generate and to alter hierarchical struc-

tures and to access the contents of the structure either by key

word (label) or by ordinal position (index). It is significant

that, although the need for hierarchical data became evident

early in the study, subsequent analyses have continually rein-

forced its relevance and importance in achieving language power.

Functional capabilities for PLANS identified in this activity

include (1) algebraic operations, (2) input/output operations,

(3) transfer of control statements, (4) conditional statements,

(5) function and/or subroutine capabilities, and (6) iteration

statements.
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$PERSONNEL

Name Job Name Job Name Job

John Engineer Mary Typist Bob Draftsman

Note: The symbol $ is used as a prefix to identify the label of
a data tree root node. Reference to $PERSONNEL within a
PLANS program statement refers to the data tree (hierachi-
cal data set) root node label and all data contained with-
in the tree, thus

$PERSONNEL

( Name - John

Job - Engineer

C Name - Mary
Job - Typist

C Name - Bob

Job - Draftsman

In a loose definition, $PERSONNEL may be referred to as
the data set for PERSONNEL.

The symbol ¢ has been adopted to indicate a null label.

Fig. A-4 Hierarchical Set Structure
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An operation that frequently occurs in scheduling is the gen-

eration of combinations or permutations of a given set. There-

fore, special PLANS iteration capabilities have been identified

that will generate, one at a time, all the combinations or permu-

tations of a set taken K at a time.

Because a design goal for PLANS is a programming capability

that is as independent as possible of application-specific infor-

mation, a requirement for indirect referencing was identified.

Two kinds of indirect referencing are required. The first is

indirect reference to a set, or within that set. An example of

this capability can be seen in the following hypothetical lan-

guage statements:

DO 15 J = 1, N

15 TOTALWT = TOTALWT + $RESOURCE.#($COMPONENT(J).NAME).WEIGHT

The symbol # is used here to indicate an indirect reference.

If $COMPONENT has the structure

$COMPONENT
1
NAME - ORBITER 7

2
NAME - PAYLOAD 35

3
NAME - SRM 12

then the iteration loop above sums the weight of Orbiter 7, Pay-

load 35, and SRM 12. The weight information is found in the

$RESOURCE set. Note that if the weight of Orbiter 7, Payload 35,

and Crewmen 12 were desired, only the $COMPONENT data would have

to be changed, the code would remain the same because the labels

ORBITER 7, PAYLOAD 35, SRM 12, never appeared in the program logic.

This illustrates the reason for the first type of indirect refer-

erence capability.
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The second type of indirect referencing deals with module

names. Consider, for example, the statement:

CALL #($RESOURCE(J).RECYCLE)

The name of a subroutine that calculates the value of the recycle

time of $RESOURCE(J) could be included as data as follows:

$RESOURCE
1
RECYCLE - ORBCYC

2
RECYCLE - PADCYC

As the CALL statement is encountered with different values of J,

different recycle modules are called. This coding can be written

both concisely, and also independently of orbiters, launch pads,

etc.

Another functional .capability identified is set ordering. A

single "order" statement can arrange the elements of a set in

order (ascending or descending) according to a list of character-

istics of that set. For example, the statement:

ORDER $PAYLOADS ON WINDOW.START,WINDOW.END

would create a payload ordering in which earlier window openings

preceded later openings. Two or more windows with equal opening'

times would be ordered so those with earlier closing times pre-

ceded those with later closing times.
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3 SYNTHETIC PROGRAMMING FOR TRIAL LANGUAGE EVALUATION

By the end of the second study month, the initial list of

elementary language operations had been identified and it included

many of the features described in the preceding section. It was

desirable to test the functional validity of the basic language

operations for scheduling problems, so a trial FORTRAN-like syn-

tax was adopted, although it was considered subject to later re-

placement or revision. The syntax made it possible to code com-

plete language statements and programs in this trial language,

sometimes called Trial PLANS.

Synthetic programming was then performed using the trial

language to evaluate basic language functional capabilities in

realistic program applications. The programming was "synthetic"

in the sense that no means existed for translation to machine

code for actual program execution. Three types of programs, de-

scribed in subsequent paragraphs, were coded and yielded further

insights and requirements for language design.

Coding with Trial PLANS was used to synthesize a number of

small routines of general utility in solving scheduling problems

and also to program several larger main programs. The main pro-

grams coded in Trial PLANS included an algorithm selection pro-

gram that performs tests on the scheduling problem structure to

select candidate solutions.
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Another program coded in Trial PLANS was a critical path

method (CPM) program. The program finds the earliest and latest

start times for a set of jobs that must be completed in a se-

quence network, determines the job that cannot be delayed with-

out extending the duration of the entire project (i.e., jobs on

the critical path), and the slack times for all other jobs. This

program provided an excellent example of the ease with which or-

dering and set manipulations can be performed with Trial PLANS.

Synthetic programming was also used to'code the basic logic of

the NASA JSC-MPAD Operations Simulation and Resource Scheduling

program (OSARS). This exercise demonstrated that the basic lan-

guage capabilities identified did make flexible programming pos-

sible, and that the basic capabilities alone provided a level of

coding statements approximately equivalent to basic logic ele-

ments in a functional flow diagram. The number of PLANS state-

ments in the PLANS-OSARS program is approximately one-tenth of

that required by a FORTRAN version.

3.4 ASSESSMENT OF SCHEDULING OPERATIONS MODEL REQUIREMENTS

Scheduling involves making decisions about alternatives in

the operations of a system. Because the task was to develop

both the functional specifications for a scheduling language and

a library of program modules, it was imperative to specify a

framework within which the operations of the system to be sched-

uled could be described. Such a framework must be completely

compatible with the basic language. Furthermore, many of the

higher-level modules in the module library must be designed to

A-19



use a standard descriptive framework so they can be easily and

consistently applied within the logic of a calling program. A

number of technical disciplines already deal with the description

and response of dynamic systems. Because scheduling is itself

not a new problem, it was necessary to carefully review existing

technology before this study specified a general scheduling op-

erations model (or, briefly, the Operations Model) for the sched-

uling language.

The complexity of building a generic operations model required

a top-down approach to guarantee that structures specified were

sufficiently general to preclude making decisions that must sub-

sequently be revised. The approach began with the concept that

system resources exist with various descriptors that are trans-

formed or altered by system processes. This fundamental concept

is illustrated in Fig. A-5. Noting that a process must occur

over a time interval, it is recognized that the process is, in

fact, the entity that associates resources together in a schedule

unit. A given process has a set of required resources, and those

resources must have appropriate descriptors. The execution of a

process, then, is functionally equivalent to specifying assign-

ment intervals for the processes' required resources.

Continued analysis led to identification of the operations

sequence as a mechanism for describing how various processes are

related to each other in time (temporally) and as predecessors

and successors. For example, an operations sequence might con-

tain the information that process A must be concluded before proc-

ess B starts, or that process B must start after process C starts.
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System Descriptors

(Condition)

Processor Re- Processor Re-

sources Input --- Processor Re- sources Input -

sources Recycled

Resource Items

Processed Input Process 1 - Resource Items - Resource Items -- Process. 2

Processed Output Processed Input

Expendable Re-
Expendable Re-sources InputInput

Process 1 Interval with Process 2

Initial Descriptors Interval Constant Descriptors Interval

Start End ;Start End

Time: Increasing-----

(Not to Scale)

Fig. A-5 Operations Model Fundamental Concepts



After expansion of the fundamental system operations model

components, i.e., the resources, processes, and operational se-

quences, an evaluation of the feasibility of integrating these

components into a model of a system that can be scheduled could

then be undertaken.

1.5 SYNTHESIS AND FUNCTIONAL EVALUATION OF THE OPERATIONS MODEL

The compatibility of the fundamental modeling concepts with

the functional capabilities of the PLANS language is, of course,

essential. Therefore, the structure for describing the system

to be scheduled (i.e., resources, processes, operations sequences),

with the hierarchical data structure identified as a language

feature, was examined. It was determined that the information

could be organized into three tree structures called $OPSEQUENCE,

$PROCESS and $RESOURCE. Examples of these structures for a model

of Shuttle operations are shown in Table A-2.

Table A-2 illustrates one of the.primary features of the

scheduling operations model data structure--the use of labels for

data entries. Although use of labels within the data structure

adds volume, their functional usefulness for accessing data is

more than sufficient justification. Also, the labels make the

data "readable," thus eliminating the need for tedious references

to a user's manual to determine formats. A brief examination of

Table A-2 will enable readers to develop a basic understanding

of how models can be specified in the hierarchical form. The

fact that no detailed explanation of the model data structure is

necessary conveys the point about readability. The logical
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Table A-2 Examples of Operations Model Data Structures

SRESOURCE SPROCESS SOPSEQ
SRO RECYCLE SRB SHUTTLE SYSTEM MISSION FLOW

SRO DURATION - 11 ASSEMBLE SRE PAIR

QUANTITY - Ia REQUIRED RESOURCES TYPE - PROCESS

CLASS - POOL SRB PREPARE EXT. TANK
SRB TYPE - PROCESS

VAB HIGH BAY C MATE EXT. TANK TO SRO

HIGH BAY NO. 1 INTERVAL TYPE - PROCESS

QUANTITY - 1 START - O TEMPORAL RELATIONS

LOCATION - BAY 1 END - 11 PREDECESSOR

CLASS - SPECIFIC DESCRIPTORS ASSEMBLE SRB PAIR
€ PREPARE EXT. TANK

HIGH SAY NO. U INITIAL MATE ORBITER TO EXT, TANK

QUANTITY -I QUANTITY - 2 TYPE - PROCESS

LOCATION - BAY 2 STATUS - TO BE RECOVERED TEMPORAL RELATIONS

CLASS - SPECIFIC FINAL PREDECESSOR
QUANTITY - 2 FATE EXT. TANK TO SRB

PERSONNEL STATUS - TO BE ASSEMBLED PREPARE ORBITER FOR LAUNCH

SRB/EXT. TANK CREW ASSEMBLE ERB PAIR SERVICE SHUTTLE FOR LAUNCH

QUANTITY - 55 DURATION - 0.4 TYPE - PROCESS

QUALIFICATIONS - ASSEMBLE SRBS REQUIRED RESOURCES TE11PORAL RELATIONS

- PREPARE EXT. TANKS SRB PREDECESSOR

- MATE TANK AND SRB SRB MATE ORBITER TO EXT. TANK & SRB

- REFURBISH LUT LAUNCH PHASE OPERATIONS

CLASS - POOL INTERVAL TYPE - PROCESS
START - O TLHPORAL RELATIONS

LAUNCH CREW END - 47 GE;IERAL

QUANTITY - 75 DESCRIPTORS C
QUALIFICATIONS - SERVICE SHUTTLE C START

- LAUNCH OPS INITIAL EQUAL TO

-REFURBISH PAD QUANTITY - END

CLASS - POOL STATUS - TO BE ASSEMBLED SERVICE SHUTTLE FOR LAUICH
FINAL PREDECESSOR

ORBITER/PAYLOAD CREW STATUS - TO BE MATED PREPARE CREW FOR FLIGHT

QUANTITY - 45 VA HIGH BAY PREPARE CREW FOR FLIGHT

QUALIFICATIONS - PERFORM PAYLOAD OPS VAB TYPE - PROCESS

- PREPARE ORBITER C TEMPORAL RELATIONS
- RECYCLE ORBITER INTERVAL PREDECESSOR

- MATE ORBITER AND TANK START - 0 PERFORM MISSION BRIEFING

CLASS - POOL END - 47 GEERAL

ASSIGNMENT - DESCRIPTORS C
MISSION CONTROL EfO

QUANTITY - 65 INITIAL EQUAL TO

QUALIFICATIONS - ON-ORBIT OPS STATUS - AVAILABLE END

- DEORBIT AND LAND FINAL SERVICE SHUTTLE FOR LAUNCH

CLASS - POOL tatus - IN USE REFURBISH LAUNCH PAD
PERSONNEL TYPE - PROCESS

CREW OPS SRB/EXT TANK CREW AEMPORAL RELATIONS

QUANTITY -7S C PREDECESSOR

QUALIFICATIONS - CREW TRAINING INTERVAL - LAUNCH PHASE OPERATIONS

- MISSION BRIEFING START - 0 RECYCLE SRB

- FLIGHT CREW PREP END - 47 TYPE - PROCESS

DEBRIEFING DESCRIPTORS TEMPORAL RELATIONS
CLASS - POOL t PREDECESSOR

CLASS - POOL INITIAL LAUNCH PHASE OPERATIONS

LAUNCH UMBILICAL TOWER QUANTITY - 30 PERFORM ON-ORBIT OPERATIONS

LUT QUALIFICATIONS - ASSEMBLE SRBES TYPE - PROCESS

QUANTITY - 3 LAUNCH UMBILICAL TOWER TEMPORAL RELATIONS

CLASS - SPECIFIC LUT PREDECESSOR
C LAUNCH PHASE OPERATIONS

EXT. TANK INTERVAL DEORBIT, REENTRY AND LAND

EXT. TANK START - 0 TYPE - PROCESS

QUANTITY - 7 END - 47 TEMPORAL RELATIONS

CLASS - POOL DESCRIPTORS PREDECESSOR
C DEORBIT. REENTRY AND LAND

ORBITER INITIAL RECYCLE ORBITER

ORBITER QUANTITY - i TYPE - PROCESS

QUANTITY -3 STATUS - AVAILABLE TEMPORAL RELATIONS

CLASS - SPECIFIC FINAL PREDECESSOR

STATUS - IN USE DEORBIT, REENTRY AND LAND

LAUNCH PAD RESOURCES GENERATED PERORM CREW RAINING OPS

LAUNCH PAD NO. I SRB PAIR TYPE - PR ES
QUANTITY - I SRB PAIR TEMPORAL RELATIONS
LOCATIT - PAD IR PREDECESSOR
LOCATION - PAD U . C PERFORM PAYLOAD OPS

CLASS - SPECIFIC DESCRIPTORS PERFORM IION RIEFIN
S TYPE - PROCESS

LAUNCH PAD NO. 2 FINAL TEMPORAL RELATIONS

QUANTITY -1 QUANTITY -I PREDECESSOR
LOCATION - PAD 2 RESOURCES DELETED PERFORM CEW TRININ PS
CLASS - SPECIFIC SRB PERFORM PAYLOAD OPSA

SRB TYPE - PROCESS
CREW € PREPARE ORBITER FOR LAUNCH

CREW DESCRIPTORS TYPE - PROCESS

CLASATT - POOL INITIAL TEMPORAL RELATIONS
CQSS - POOL INITIAL PREDECESSOR

PAYLOAD FINAL PERFORM PAYLOAD OPS

PAYLOAD QUANTITY - 0
QUANTITY - 163
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transparency of the scheduling operations model data structure is

essential to ease of program application and adaptation, and

eliminates the need for a high level of specialized knowledge to

develop a scheduling program.

Recognizing that details of the arrangement of information

within the Operations Model data structure depended on how the

information was used in a scheduling problem solution, macrologic

was developed that described how the Operations Model and the

algorithm would function together to solve a scheduling problem.

For logical simplicity, the Operations Model was defined as (1)

the Operations Model data structure and (2) those functions re-

quired to synthesize a schedule that do not involve process al-

ternative, resource allocation, or event timing decisions. Model

capabilities in this category include updating the resource as-

signments, evaluating resource availability, computing values of

any special parameters needed by an algorithm to make a decision,

etc. With that conceptual distinction, the roles of the model

and the algorithm can be interpreted in terms of a dialogue; the

algorithm asks for problem-oriented information about the sys-

tem and its operations on which to.base a scheduling decision,

and the model supplies the information.

A typical example of the macrologic of the operations model

and a time-progressive heuristic algorithm is shown in Fig. A-6.

The figure also contains annotations to interpret the macrologic

in terms of the OSARS program of NASA-MPAD currently used as a

prototype program for building flight schedules.
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OPERATIONS MODEL TIME-PROGRESSIVE SOLUTION ALGORITHM Select time of next
i. availability of a

Select Next Time Interval; ~full resource set.

User Define Problem -- Construct Joblist of

:Data Base and Objectives Eligible Unscheduled Jobs Order payloads by

l start of window,

Select Next Job from Joblist 
end of window.
Joblist is ordered

subset of above

Identify Job-Related Process : Unschedule Jobs with window open

I - -at selected time.

Construct Set of All Resources

That Make Process Feasible at Payload substitution:

Selected Time YES Can previously sched-

If a payload is uled payload be pre-

assigned via Can Jobs empted by this one?

this route, the Are Sufficient NO Be Unscheduled to NO

next load will Resources Available? Free Resources?
be considered
before time is
incremented; YES
thus, the next Select Resources for Job Using

pass for this Subproblem-Level Algorithm

test will yield Update Assignments for All

NO and substi- Selected Resources -If choice exists,

tution will be I take resources

considered. 
that have been

Are Are available longest.

All Jobs All Jobs
NO NO

in Joblist YES for Entire Problem

YES

LAwithOSAS Annotations

Fig. A-6 Operations Model/Solution Algorithm Interface Excample with OSARS Annotations



3.6 ANALYSIS OF SOLUTION STRATEGIES APPLICABLE TO SCHEDULING PROBLEMS

The analysis described here deals with classification of

algorithms appropriate for scheduling problems, examination of

techniques for decomposing large problems into computationally

practical subproblems, and analysis of heuristic methods for solv-

ing complex problems.

To design a language applicable to a wide variety of schedul-

ing problems, it is necessary to study a very large number of

algorithms. This is accomplished most efficiently within the

framework of some logical classification scheme. In the early

weeks of the study, such a scheme was developed based on the

characteristics of the problems to which certain algorithms ap-

plied. Thus, problems were classified from a solution strategy

viewpoint. This classification is summarized in Table A-3.

Table A-3 Summary of AZgorithm Classification

PROBLEM ALGORITHM CLASS

Low-Dimensional General-Purpose
Simple Scheduling Mathematical Programming

(ILPs, Dynamic Programming)

Medium-Dimensional Special-Purpose
Specialized Scheduling Mathematical Programming

(Marshal Fisher, etc)

High-Dimensional Heuristic Algorithms

Complex Scheduling (Wiest, Kelly, etc)

Set Covering Enumeration
(Payloads) (Total, Bounded, Implicit)
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The strategy of decomposition is fundamental to the applica-

tion of many algorithms (especially mathematical programming) to

scheduling problems of realistic size and complexity.. Decomposi-

tion consists of any mathematical or logical technique for work-

ing the entire problem by solving smaller and simpler related

problems. The relationship of the subproblems is manipulated by

a so-called master algorithm that serves to coordinate the sub-

problems in such a way that optimality of the entire problem is

guaranteed.

Several sources exist for methods of problem decomposition.

Methods analyzed in this study are summarized in Table A-4. An

explanation of each of these techniques appears in Vol II of the

First Interim.Report.

Table A-4 Summary of Decomposition Strategies

STRATEGY REFERENCE

Restricted Master, Dantzig and Wolfe (1960)
Column Generation

Dual Minimax Everett (1963)

Right-Hand Side Silverman (1968)
Allocation

Extended Generalized Kaul (1965)
Upper Bonding

Benders' Decomposition Benders (1962)

Rosen's Partition Rosen (1963)

To investigate the problem of algorithm selection that always

faces the analyst with a scheduling problem, a logical network

(Fig. A-7) has been developed that gives the appropriate sequence

of decisions that must be made about problem structure to reach

an appropriate algorithm selection. A-27
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3.7 IDENTIFICATION OF FUNCTIONAL REQUIREMENTS VIA SOLUTION OF TRIAL

PROBLEMS

The approach used to identify appropriate features for PLANS

has placed heavy emphasis on analysis of real problems. Ability

to determine appropriate functional capabilities requires a

thorough understanding of methods for solving scheduling problems

that have successfully provided computational results. The choice

of solution techniques must be made not only on the basis of prob-

lem structure, but on the basis of computational practicality and

experience with the details of computational pitfalls and compli-

cations. A truly practical collection of library modules for the

language must include capabilities to perform special functions

and adjustments, and modifications that are almost always neces-

sary to accelerate or improve the computational results. These

rather subtle procedures can only be discovered by solving prob-

lems. Therefore, in the first six months of the study, a variety

of specific scheduling problems were defined. There problem

characteristics and structure were thoroughly analyzed, and one

or more solution strategies defined for each of the trial prob-

lems summarized in Table A-5. The strategies were computerized

either by writing FORTRAN programs or using existing programs.

Detailed discussion of trial problem analysis is contained

in the First Interim Report.
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Table A-5 Summary of Trial Problems

ID Problem Name Solution Strategy Algorithms Employed

1 Activity Scheduling Decomposition Generalized Linear

Problem 0-1 Linear Program Program
at Master Level,

Enumeration at
Subproblem-Level

2 Multi-Item Decomposition Generalized Upper Bounding
Scheduling Problem 0-1 Linear Program Dual Minimax with

at Master Level Steepest Ascent

Dynamic Programming Dynamic Programming
at Subproblem-Level

3 Tire-Facility Two-Level Heuristic Time Transcendent (Minimum

Problem Master Level Handles Slack) Algorithm at Master-
Precedence and Re- Level, Minimum Utility

source Constraints. Rule at Subproblem-Level
Subproblem-Level
Decides Substituta-
bility

4 Problem of Prittsker, One-Level Heuristic Time Transcendent Heuristic

Watters, and Wolfe (Minimum Slack) (Minimum Slack)

5 Flowshop and General Bounded Enumeration Ignall and Schrage's
Combinations Using Partial Schedules Bounded Enumeration
Problem Algorithm

6 Set Covering Total Enumeration Enumeration Tree Tailored

Problem for Tractible Numbers to Payload Set Covering
of Combinations Using Domination to Prune

Branches

7 Resource Leveling Solve Minimum Time, Weist's Time Progressive
Problem Restricted Resource Multiresource-Level Heuris-

Problems (Possibly tic Algorithm
a Sequence of Problems
Varying Resource Poor
Levels)

Several potential library modules were identified as a result

of the pursuit of specific problems from conceptual definition to

numerical results. However, emphasis in the first six months was

focused on available experience with computational techniques on

the general functional aspects of specific types of scheduling
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problems. Because of these efforts, it was possible to structure

the findings into a set of discrete algorithm-related modules

that are relevant to the range of problems for which PLANS is be-

ing designed, and which are useful to the analyst who is confronted

with computational subtleties.

3.8 FORMULATION OF PRELIMINARY LIST OF LIBRARY MODULES

Activities in the first six months were designed to establish

basic PLANS functional requirements and to establish the struc-

ture from which higher level capabilities could be specified in

the form of library routines (modules). Although specification

of the library routines associated with both the Operations Model

and the algorithms was to be a primary activity in the second

part of Phase 1, a preliminary list of library modules did re-

sult from the analysis activities. In fact, the preliminary list

was modified substantially during the second part of the Phase 1

study. However, it provided a useful starting point from which

a careful examination of appropriate library contents could pro-

ceed.

3.9 PRELIMINARY ASSESSMENT OF LANGUAGE TRANSLATION OPTIONS

Investigation of PLANS implementation options began during

the first part of the study. At issue was the basic mechanism

for converting PLANS programs to executable code. If a general-

purpose programming language existed with sufficient power to

perform the basic operations implied by the basic functions of

PLANS, it appeared desirable to implement PLANS by constructing

a translator that uses the general-purpose language as its object
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language. This approach is much less expensive than building a

compiler to translate PLANS directly to machine language because

the object language's compiler fills this function. Furthermore,

this approach provides considerable machine-independence and al-

lows use of additional high-level operations that may already

exist in the object language at very little cost.

The first activity under this milestone was analysis of ex-

isting general-purpose programming languages to find those appro-

priate for use as object languages. A summary of the conclusions

is shown in Table A-6. Translation to PL/I offers some major ad-

vantages. First, the implementation of the PLANS language trans-

lator is substantially less expensive and would require less time

than building a complete new compiler or translating to another

language. Second, it should be possible to build such a trans-

lator so that PL/I statements are admissible in the same pro-

gramming as PLANS statements. Thus, the entire capability of

PL/I would be available to the programmer even though he is not

required to understand PL/I. Third, the translation to an ex-

isting language initially does not preclude implementation of a

PLANS compiler (i.e., translator directly to machine language)

at a later time. Thus, the decision was made to recommend as

initial implementation mode, translation from PLANS to PL/I.

In the first six-month period of the study Martin Marietta

subcontracted with Dr. James VanDoren of the Department of Com-

puting and Information Sciences, Oklahoma State University, to

deliver a two-day seminar on syntax-directed compilation and
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and methods of implementing scheduling languages. This seminar,

conducted in the seventh month (January 1974) of the study, proved

highly useful and led to a formal method of semantic specifica-

tion described in the next section.

Table A-6
Evaluation of Relevant Capabilities of Candidate Object
Languages

0 0

o o d o

FORTRAN + -- - + + - + + + +

SIMSCRIPT + 0 -- + + 0 + + + +

ALGOL + -- - + + - + + + +

COBOL + - - + + + - + + + +

APL + + 0 - + - + + - + +
LISP 0 + + . - .

GPSS Speciaized language. Clearly not

Cd 0 -- 4 r

Legend: Function can be Performed:> 0

I + Easily + + + + + + + + +

COBOL + - + + + - + + + +

0 Clumsily

-For Practical Purposes, Not At All
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4.0 MAJOR STUDY ACTIVITIES IN SECOND PART OF STUDY PHASE 1

4.1 DEVELOPMENT OF MECHANISM FOR SYNTACTIC/SEMANTIC SPECIFICATION

To enable a digital computer to "understand" and execute the

commands of a programming language, a compiler or translator (com-

puter program) must be developed to read the language statements

and cause machine operations to occur in accordance with these

commands. This requires two kinds of basic information: (1) a

description of the allowable combination of language elements in

a statement and (2) what must happen or what the computer must do

after each language element or combination is recognized and ac-

cepted for execution. Therefore, the problem is to specify a lan-

guage in this framework so the compiler or translator needed to

implement the language can be programmed .with minimal difficulty,

ambiguity, and uncertainty of results.

Language syntax defines the rules by which language elements

can be combined legally to form language statements. Most pro-

gramming language syntaxes can be concisely defined with formal

notational techniques such as the often used Backus-Naur Form

(BNF).* BNF is a formal metalanguage for phrase-structure gram-

mars whose application is not limited to any particular language.

Thus, the scheduling language syntax could be concisely and un-

ambiguously specified with existing techniques.

*Naur, P. (Ed): Report on the AZgorithmic Language ALGOL 60.

Communications of the ACM. 1960, 3, 299-314.

Preceding page blank
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However, the specification of scheduling language semantics,

i.e., the meaning of the language elements and statements, pre-

sented a different problem. A metalanguage is a language used to

talk about a language. Natural languages, such as English, are

in fact metalanguages when used to talk about a language. Semantic

specifications for programming languages have frequently taken the

form of written English text that describes what is supposed to

happen when language statements are executed. Using English as a

metalanguage it is:

1) difficult to be complete, i.e., to describe the results of

all possible legal statements in the language;

2) difficult, in most cases, to be precise and unambiguous;

3) impossible to be concise enough to communicate to the language

implementer effectively;

4) difficult to assure internal logical consistency in the lan-

guage semantics;

5) difficult to provide insight on how various capabilities could

be implemented in the compiler or translator.

A technique was sought to avoid these problems and to make

the PLANS semantic specifications as precise as the syntactic

specifications. The idea of embedding the semantics into the

syntactic specification was suggested by Dr. James VanDoren dur-

ing his January 1974 seminar. The embedding was accomplished by

defining an elementary conceptual device, called a pseudomachine,

which could respond to simple commands. The semantics of PLANS

statements could then be defined in terms of these simple commands
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that can be generated by the translator as the syntax of the

statement is recognized. Thus, the pseudomachine commands, which

contain the meaning of a PLANS statement, have a correspondence

to the syntax or grammatical structure of that statement, and once

the syntax of the statement is recognized, the semantics of that

statement is known unambiguously.

The pseudomachine chosen for use in the PLANS specification

mechanism involved a simple device whose basic data structure is

a push-down stack. The data elements in such a stack may be ad-

dresses in computer storage, character strings, or logical values

(true or false). An example description of the pseudomachine op-

erations used to support the PLANS embedded semantic specifica-

tions is given in Table A-7, which shows that each of the pseudo-

machine operations is identified with a symbolic label, e.g., DUP,

POP, INVERT, etc. A functional description of the operations is

also given in English text, followed by a stack manipulation/

transformation example where applicable. Thus, in the table, the

operation DUP or DUPLICATE means "Push a copy of the content of

Position 1 onto the stack." If the stack initially contained two

data.elements, XXXXXX and YYYYYY, which were considered to be in

these relative positions,

XXXXXX

YYYYYY

,then XXXXXX occupies Position 1 on the stack and the result of

executing the commanded operation DUP would be to transform the

stack to
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Table A-7 PLANS Pseudomachine Operation List (Examples)

STACK OPERATIONS (EXAMPLES)

DUP (DUPLICATE)
PUSH A COPY OF THE CONTENT OF POSITION 1 ONTO THE STACK.
E,G.t DUP RESULTS IN THE TRANSFORMATIONI

XXXXXX XXXXXX
YYYYYY -- > XXXXXX

YYYYY

POP (POP)
POP THE CONTENT OF POSITION 1 OFF THE STACK.
E.G., POP RESULTS IN THE TRANSFORMATION

KXXXXXX .. > YYYYYY
YYYYYY

ARITHMETIC OPERATIONS (EXAMPLES)

ADD (ADD)
ADD THE CONTENTS OF POSITIONS 1 AND 29 REPLACE THE CONTENT
OF POSITION 2 BY THE RESULT, POP 1 POSITION.
E.G6. ADD RESULTS IN THE TRANSFORMATION$

23 29
6 .> XXXXXX
XXXXXX YYYYYY
YYYYYY

SUB (SUBTRACT).
SUBTRACT THE CONTENT OF POSITION I FROM THAT OF POSITION 29
REPLACE THE CONTENT OF POSITION 2 BY THE RESULT* POP 1 POSITION.
E.G., SUB RESULTS IN THE TRANSFORMATION1

23 -17
6 -- XXXXXX
XXXXXX YYYYYY
VYYYYYY

MULT (MULTIPLY)
MULTIPLY THE CONTENTS OF POSITIONS I AND 29 REPLACE THE CONTENT

OF nOSITION 2 BY THE RESULT, POP 1 POSITION,
E.G., MULT RESULTS IN THE TRANSFORMATIONI

12 36
3 -- > XXXXXX
XXXXXX YYYYYY
YYYYYY

DIV (DIVIDE)
DIVIDE THE CONTENT OF POSITION 1 INTO THE CONTENT OF POSITION 29
REPLACE THE CONTENT OF POSITION 2 BY THE RESULT. POP 1 POSITION.
E,G., DIV RESULTS IN THE TRANSFORMATION:

12 .25
3 .- > XXXXXX
XXXXXX YYYYYY
YYYYYY
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XXXXXX

XXXXXX

YYYYYY

All pseudomachine operations described in Table A-7 can be inter-

preted in a similar manner.

After the pseudomachine commands appropriate for defining the

semantics of a given language have been specified, a basis ex-

ists for understanding the meaning of the language elements in a

language statement. An example of the PLANS specifications using

the pseudomachine as a mechanism for embedding the semantic speci-

fication in a BNF-type grammar is shown in Table A-8. The com-

plete PLANS specifications in this format are in Volume III of

this report. Previous use of this technique for functionally

specifying a language is not known. Semantic definition by means

of an abstract machine was incorporated in a cumbersome way in the

Vienna Definition Language, but has been an otherwise undeveloped

method.

A significant extension of the pseudomachine functional speci-

fication provided a means of translating language statements into

executable code before actual implementation of a formal PLANS

translator. To do this, the push-down stack device was modeled

as a software machine (an emulator) by a computer program. This

computer program simulated operations of the pseudomachine, which

by design described what the computer was to.do to execute each

basic language operation. By using the PLANS grammar with the
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TabZe A-8
PLANS Grammar with Embedded Semantics: a Format Illustration

/* IN;EqTo GRAFT, AND GPAFT INSERT STAITEMENTS *

INSERTSTATEMENT :=
"INSERT"
.SET(TREE STRINGARITH_SvITCH = 1)
CONSTRAINFU_EXPRESSION
( "HEFORE" I "AS")
HARUTRFENOE
.OUT(INSENT/INVERT)
( .TEST(REAI._DUMMYSWITCH = 2) .OUT(SNIP/INVERT)

( TEST(LABEL._SUBSCPIPTSWITCH = 1) .OUT(G.NU)
I .EMPTY .OUT(GWLND) )

I ( .TEST(LAbEL.-SUHSCRIPT.SWITCH = 1) .OUT(RND)

.I EMPTY .OUT(RWL_N)) ) )

GRAFT.STATEMENT :
"GRAFT"
.SET(TREE.STRINGARITHNSITCH = 1)
( "INSERT"
CONSTRAINFO_EXPRESSION
.OUT(SNIP)
( "REFORE" I "AS" )
HARDTREENODE
.OUT( INSE!T/INVERT)

I CONSTRAINED_EXPPESSTON
.OUT(SNIPi
"AT"
HARD_TRkFENODE )

( .TESTILAvFL_SURSCRIPT_SWITCH = 1)
.UUT(G-NU,

I .EMPTY
.OUT(GWL-D) D) )

/* THESE THREr STATFMENTS COMPLEMENT THE TREE ASSIGNMENT 4/

/* STATEMENr THE FOUR STATEMENTS ALLOW THE PROGRAMMER TO EITHFR */
/* REPLACE AN EXISTING NODE OR TNSFRT AT ITS POSITION MOVING IT O/
/* AND ALL LATER NODES TO 7HE RIGHT, AND THEY ALLOW THE
/* PROGRAMMER TO EITHER PHUNE THE SOURCE STRUCTURE uR LEAVE IT */
/* UNALTERED* */

/* IT SHOULD HE NOTFD THAT THE TREE ASSIGNMENT STATEMENT IS BASIC */
/* AND IS SUFFICIENT TO PROVIDE ALL THE NECESSARY FUNCTIONAL 4/
/* CAPABILITIES. FOR EXAMPLE$ */
/* GRAFT A(1) AT n(2) I 0/
/* COULD RE ACCOMPLISHED HY /

/* $8(2) = SA(1) ; */
/* PRUNE $A(1) ; 4/

/* IT SHOULDI) E UNDERSTOOD* HOWEVER, THAT THE GRAFT FUNCTION */
/* ACCOMPLISHES THE OPERATION MUCH MORE EFFICIENTLY, SINCE IT */
/* NEED ONLY "MOVE" THE STRUCTURE RY CHANGING SOME POINTERS, *

/* SAVING A COMPLETE COPY nPERATION AND A COMPLETE PRUNF */
/* OPERATION. WHEN INSERT GRAFT9 AND GRAFT INSERT ACCOMPLISH */
/* THE DESIREI) FUNCTION, ThEY SOULD BE USED IN PREFERENCE TO o/
/* FUNCTIONALLY EQUIVALENT PROGRAMMER-GENERATED CODt. 4/
/**********4**********************************************/*********

Note: Detailed Notational Definitions are found in Volume III of this report.
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embedded semantics, each language statement was manually trans-

lated into appropriate pseudomachine operations; after input to

the emulator, it was possible to use the emulator to perform all

the machine operations necessary to execute the PLANS statements.

It should be emphasized that the software pseudomachine was

not necessarily an efficient device for program execution; how-

ever, it provided a capability to test logical PLANS code and as-

sure the adequacy of the language functional capabilities. More

significant is the fact that executability was provided during

the language definition phase rather than after implementation

effort had occurred. It is important to note that the emulator

mechanization of the pseudomachine provided a self-checking veri-

fication of the consistency and.logical sufficiency of the PLANS

functional specifications themselves much earlier than previous

methods would have permitted.

4.2 EVALUATION OF LANGUAGE SUITABILITY FOR APPLICATIONS

In the first six months of the study, trial programming was

done using a temporary syntax for a language with the functional

capabilities anticipated for PLANS. This work is referred to in

Section 3.3 as synthetic programming. After developing a syntactic

and semantic specification mechanism, and after concluding to rec-

ommend translation. from PLANS to PL/I, the syntax of PLANS devel-

oped rapidly. Because the conventions of PLANS coding needed to

be similar to those of FL/I, a PL/I type syntax was adopted. Cod-

ing in PLANS rather than a functionally similar synthetic lan-

guage (called TRIAL PLANS in some documentation) could then be

accomplished. A-41



Several applications programs or program segments were written

to validate the adequacy of both the syntax and semantics of PLANS.

As a result of these exercises, several new features appeared in

the language that made manipulations of the data structures (i.e.,

trees) easier to perform. For example, GRAFT and PRUNE took on

language meanings similar to their physical meanings. Alterna-

tives were resolved about whether a label is preserved when its

corresponding node is grafted onto another tree, etc. To illus-

trate the increase in statement power that resulted after the

basic language capabilities were defined and the syntax and seman-

tics were nearly developed, Table A-9 is presented. Table A-9

compares the TRIAL PLANS code developed early in the study with

the PLANS code developed later. It should be stressed that the

functions of the routines are identical.

Because of the availability of the pseudomachine described in

Section 4.1, analysis of language suitability could include the

execution of PLANS code. Several modules were coded in PLANS and

the PLANS code manually converted to pseudomachine instructions

using the PLANS grammar (i.e., the PLANS grammar with the embedded

semantics). The pseudomachine instructions were then input to

the computer program that emulated the pseudomachine, and the

PLANS code logic was executed. This process served to verify (1)

the adequacy and consistency of the specifications for the PLANS

statements, (2) the validity of the pseudomachine emulator pro-

gram, and (3) the adequacy and consistency of the logic of the

module written in PLANS.
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Table A-9 Development of Syntax and Semantics of PLANS

This routine takes an unordered list of Jobs and orders it so that

no precedence relationships are violated.

Written in Trial PLANS:

SUBROUTINE ORDERBYPREDECESSORS ( $SET , $REMAINDER )
DO 2 I = 1, NUMBER ( $SET )

2 IF ( PREDECESSORS OF $SET(1) .SUBSET OF. $NAMES ) GO TO 3

$REMAINDER = $SET
$SET = $TEMP
RETURN

3 $TEMP = $TEMP & $SET(I)
$NAMES = $NAMES & NAME OF $SET(1)
$SET = $SET $SET(I)
IF ( $SET .NE. $NULL ) GO TO 1
$SET = $TEMP
$REMAINDER = $NULL
RETURN END

Written in PLANS:

ORDER BY PREDECESSORS: PROCEDURE ($JOBLIST, $ORDERED LIST) ;

DECLARE $NAME LIST, $TEMP LOCAL ;LOOP:

GRAFT $JOBLIST.FIRST: (ELEMENT.PREDECESSOR SUBSET OF $NAMELIST)
AT $TEMP ;

IF $TEMP IDENTICAL TO $NULL THEN RETURN

$NAME LIST(NEXT) = LABEL ($TEMP) ;
GRAFT $TEMP AT $ORDERED_LIST(NEXT) ;
GO TO LOOP ;
END ORDER BY PREDECESSORS ;

An example of'executed PLANS code is contained in Table A-10

which shows the input data and output data for the ORDER_BY

PREDECESSORS code of Table A-9. The data pertain to a simple

network representation of Shuttle Operations also shown in Fig-

ure A-8.

Several examples of coded routines or programs are included

in Volume II of this report. All examples were developed during

the study as a means of evaluating the applicability of the lan-

guage.
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Table A-10 Execution of ORDER BYPRECESSORS Coded in PLANS

INPUT DATA OUTPUT DATA

$JOBLIST $ORDERED LIST
LAUNCH OPS PAYLOAD OPS

PREDECESSORS CREW TRN OPS

X - SERVICE SHUTTLE PREDECESSORS
X - PREP CREW X - PAYLOAD_OPS

ONORBIT OPS PREP DROP TANK -
PREDECESSORS MISSION BRIEF

X - LAUNCH OPS PREDECESSORS

DEORBIT LAND X - CREW_TRNOPS

PREDECESSORS PREP CREW
X - ONORBIT OPS PREDECESSORS

CREW TRN OPS X - MISSION_BRIEF

PREDECESSORS PREP ORB LAUNCH
X - PAYLOAD OPS PREDECESSORS

PREP CREW X - PAYLOAD_OPS
PREDECESSORS ASSEMBLE SRBS

X - MISSION BRIEF MATE TANK TO SRB

PAYLOAD OPS - PREDECESSORS
PREP DROP TANK - X - ASSEMBLE SRBS

SERVTCE SHUTTLE X - PREPDROPTANK

PREDECESSORS MATE ORBITER
X - MATE ORBITER PREDECESSORS

DEBRIEF CREW X - MATE TANK TO SRB

PREDECESSORS X - PREP-ORB LAUNCH

X - DEORBIT LAND SERVICE SHUTTLE
MISSION BRIEF PREDECESSORS

PREDECESSORS X - MATE ORBITER

X - CREW TRN OPS LAUNCH OPS
PREP ORB LAUNCH PREDECESSORS

PREDECESSORS X - SERVICE SHUTTLE

X - PAYLOAD OPS X - PREP_CREW

ASSEMBLE SRBS - ONORBIT OPS
MATE TANK TO SRB PREDECESSORS

PREDECESSORS X - LAUNCH_OPS

X - ASSEMBLE SRBS DEORBIT LAND
X - PREP DROP TANK PREDECESSORS

MATE ORBITER X - ONORBIT_OPS

PREDECESSORS DEBRIEF CREW
X - MATE TANK TO SRB PREDECESSORS
X - PREP-ORB LAUNCH X - DEORBIT_LAND

REFURB PAD REFURB PAD
PREDECESSORS PREDECESSORS

X - LAUNCH OPS X - LAUNCH_OPS
REFURB LUT REFURB LUT

PREDECESSORS PREDECESSORS
X - LAUNCH OPS X - LAUNCH_OPS

RECYCLE SRB RECYCLE SRB
PREDECESSORS PREDECESSORS

X - LAUNCH OPS X - LAUNCH_OPS
RECYCLE ORB RECYCLE ORB

PREDECESSORS PREDECESSORS
X - DEORBIT LAND X - DEORBIT_LAND

Note: The symbol X is used in these structures for a null label
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P/L SUPPLY CREW SUPPLY (P L RETURN)

PERFORM
PERFORM CREW DEBRIEF (CREW RETURN)SPACE OR-ENTED P/L TRNG REQJ
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4.3 EVALUATION OF LANGUAGE IMPLEMENTATION FEASIBILITY

Having arrived at a desirable basic functional design for PLANS,

it was necessary to consider the feasibility of its implementation.

This required a consideration of specific execution mechanisms for

individual PLANS statements, language parsing and translator de-

sign mechanisms, system implications of PLANS, and possible disc

access and update mechanisms. In each case, the emphasis was not

on making detailed tradeoff decisions, but on a determination that

at least one feasible method existed.

Dynamic tree manipulation is the basis of PLANS. The most

basic implementation feasibility issue is, therefore, the deter-

mination of a mechanism for the representation of dynamic trees.

The mechanism that has been selected is the binary tree structure.

In this structure, a nonterminal node contains a pointer to its

leftmost descendant, and each nonrightmost node at a given level

points to its next sibling to the right. This structure is simple

to implement and is quite efficient for most foreseen applications,

but random access time by subscript or label varies in porportion

to the number of nodes per level. Any mechanism that avoids this

problem would necessarily require multiple descendant pointers,

with increased overhead, and hashed or ordered label pointers to

allow a nonsequential search. These methods would seriously de-

grade performance with small trees and have been rejected as dif-

ficult and undesirable.
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Storage of labels and values is on issue that might well de-

cide the efficiency of PLANS execution. It is a very simple mat-

ter to physically store this information as part of each node,

but this requires allocation of label and value space for each

node, even though a given node may lack one or both. It also re-

quires allocation of full-length fields (or variable-length node

records) for this information, even though the actual information

to be stored requires only a small portion of this space. This

situation is amenable to the usual space-time tradeoff, and we

have elected to employ a variant of the buddy system to allow

dynamic allocation of varying-length records for label and value

storage. Some testing of this method will be required before it

can be determined whether it represents a reasonable tradeoff,

but preliminary execution trials indicate its basic feasibility

and practicality.

A second concern was with mechanisms appropriate.for language

parsing and translation. The PLANS syntax proves to be expressible

in a form that is amenable to top-down deterministic parsing, a

simple and efficient technique. Furthermore, the PLANS functional

specification was expressed in a form quite amenable to the appli-

cation of automated translator-writing concepts. These methods

have now been employed to generate a fairly extensive syntax

checker for PLANS, and a very rudimentary code generator. The

indicated parsing method and the automated translator generation

approach appear quite powerful and appropriate for this applica-

tion.
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PLANS has, or could have if extended in foreseeable ways, sev-

eral implications at the computer system level. The most basic of

these derives from the extreme desirability of PL/I as the trans-

lator object language. If PLANS is to be executed on a particular

system, translator development and operation will be much more

straightforward if that system has a PL/I capability. In the

past, this would have restricted PLANS to IBM computers, but this

is clearly no longer true. CDC and Univac have announced deliv-

ery of PL/I compilers in 1975, and other major manufacturers are

quite likely to develop compilers for it.

The possible extension of PLANS into interactive programming,

interactive execution, and disc access/update, particularly using

a generalized data base management system, has obvious system im-

plications, but these implications are not significantly PLANS-

specific. All the usual considerations that are encountered in

the development of interactive systems and data base applications

can be expected with these extensions.

The use of a generalized data base system, warranted special

consideration, since PLANS tree structures represent a well-de-

fined special application for such a system. System 2000 was con-

sidered since it is a simple, easy-to-use, hierarchical data base

management system. This system offers a subset of the functional

capabilities of most other such systems, but makes the capabili-

ties very accessible to the user. Analysis revealed good com-

patibility between PLANS and System 2000, and it was concluded

that an automatic translation capability to map PLANS statements
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into System 2000 statements is feasible. Since System 2000's

capabilities also exist in such systems as IBM's IMS, it is ap-

parent that PLANS access and update statements can be made to

functionally correspond to operations in those systems, but per-

haps at some cost in difficulty and complexity.

4.4 DEVELOPMENT OF CONTENTS AND SPECIFICATIONS FOR LIBRARY MODULES

The major emphasis of the modeling and algorithm tasks in the

second part of Phase 1 was placed on definition of the contents

of a module library and determination of the correct separation

of functions among the modules. A detailed analysis of scheduling

problems reveals a very large number of capabilities that could

be preprogrammed; yet many of these are useful only in highly

specialized problems and thus would have little value in a gen-

eral library. The problem with specifying a program library is

not so much what to put in it, as what to leave out of it.

During the second part of Phase 1, modules that met the fol-

lowing criteria were specified:

1) Each module is limited to a single logical function. Al-

though it is possible to group several of the specified mod-

ules together based on high-level functional similarity, to

do so would restrict flexibility or decrease the computational

efficiency of the functions represented. Therefore, the mod-

ules specified for the program library should perform a sin-

gle, separable logical function.
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2) Each module performs a function that is common or likely to

occur in typical scheduling software. No module is specified

that is applicable only to an infrequent special case, one

that is required only in an unenlightened or highly encum-

bered approach where an alternative exists.

3) No module specified contained judgments or decision making

logic for which the criteria are open to opinion. For ex-

ample, no module should assume a specific economic model, a

queuing service policy, or a criterion for resolving resource

alternatives. These judgmental matters are considered too

problem-dependent and inflexible for an initial library spec-

ification. Because of the criterion for functional simplicity

and separability (criterion 1), the specified modules perform

elementary operations and generally return information upon

which decisions can be made rather than making the decisions

themselves. Modules that make simple decisions based on quan-

titative criteria, which are easily perceived by the user, are

specified as decision algorithms. A clear distinction is pre-

served between simple decision making modules (algorithms) and

information providing modules (the operations model). Thus,

all of the latter are equally applicable whether exercised

interactively by a user making real-time decisions or in a

batched system design where algorithm modules make the sched-

uling decisions.
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The output of this analysis was specifications for modules

covering a range of sophistication, from computing the duration

of an interval to calculating the entire schedule for a project

with tens of thousands of jobs each sharing resources with other

jobs. The contents of the specified module library are shown in

Table A-11 classified loosely according to their functions within

the overall modeling and solution process.

Some generalizations are evident from an examination of the

library contents. Two major types of solution strategies are sup-

ported: mathematical programming techniques and project sched-

uling techniques. Of the two, it was concluded that the project

scheduling techniques represent the most capable and practical

generalized techniques available for realistic problems. Mathe-

matical programming techniques are useful, however, for special

problems with small dimensionality, and are, therefore, supported

by the specification of appropriate library modules.

It is also evident that the library contains many modules that

perform the common bookkeeping functions that can be standardized

without loss of logic.flexibility. For example, all scheduling

programs must keep track of resource assignments as they are made. J

This simple function is accomplished by the modules UPDATE

RESOURCE and WRITE_ASSIGNMENT. Similarly, all scheduling involves

the checking of real or anticipated assignments for constraint

compatibility. Four modules that perform constraint checking are

specified. To facilitate the formulation of logically consistent

operations model definitions, three preprocessing modules are
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Table A-11 Contents of the Module Library by Title

PREPROCESSORS

CHECK FOR PROCESS DEFINITION
NETWORK EDITOR
REDUNDANT PREDECESSOR CHECKER

PRELIMINARY PROCESSORS

GENERATE JOBSET
PREDECESSOR SET INVERTER
ORDER BY PREDECESSOR
CRITICAL PATH PROCESSOR
PREDECESSOR SET INVERTER
NETWORK ASSEMBLER
CRITICAL PATH CALCULATOR
CONDENSED NETWORK MERGER
NETWORK CONDENSER
PROJECT DECOMPOSER
COMPATIBILITY SET GENERATOR
FEASIBLE PARTITION GENERATOR

ELEMENTARY FUNCTIONS

DURATION
ENVELOPE
CHECK ELEMENTARY TEMP RELATION
WRITE ASSIGNMENT
INTERVAL UNION
INTERVAL INTERSECTION

PERFORMANCE OR CONSTRAINT STATUS

CHECK EXTERNAL TEMP RELATIONS
CHECK INTERNAL TEMP-RELATIONS
RESOURCE PROFILE
POOLED DESCRIPTOR COMPATIBILITY
CHECK DESCRIPTOR COMPATIBILITY

DATA UPDATING

UPDATE RESOURCE
UNSCHEDULE
DESCRIPTOR UPDATE

ALGORITHMS

FIND MAXIMUM
FIND MINIMUM
HEURISTIC SCHEDULING PROCESSOR
RESOURCE ALLOCATOR
RESOURCE LEVELER
NEXT SET
PRIMAL SIMPLEX
DUAL SIMPLEX
GUB LP
INTEGER PROGRAM
MIXED INTEGER PROGRAM
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provided. Although many additional routines could be specified

to perform analyses of input data, it was decided that the prob-

lem analyst with even a minimum of experience would be unlikely

to use such capabilities, i.e., he would be more likely to have

sufficient understanding of his problem to avoid certain obvious

logical inconsistencies. For example, it was deemed unnecessary

to build a module to check if any defined process requires more

resources than are determined to be in the problem model. The

inconsistencies that are more likely to occur are, however, de-

tectable by the specified preprocessing modules.

Finally, the library contains many typical ordering and parti-

tioning functions call preliminary processors. These modules cal-

culate parameters (such as slack in a network) or create sequence

lists that are often used by a decision algorithm. These same

data are equally useful in an interactive scheduling process in

which human decisions are used. Thus, minimum executive logic or

scheduling system design has been assumed in specifying the con-

tents of the module library.

The detailed functional specification of each module in the

library is contained in Volume III of this report, whereas insight

in the actual use of the-library for scheduling is provided in

Volume II.
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4.5 DEVELOPMENT OF STANDARD DATA STRUCTURES

The utility of a module library depends not only on its con-

tents and the appropriate allocation of functional capabilities,

but also on the degree of integration between the modules. It is

undesirable, for example, to require through improper specifica-

tions that the program designer devise elaborate special purpose

tree structures and reformatting logic to convert the output of

one module to the appropriate format for the input of another

module. This problem is minimized if a set of generalized template

data structures are defined. Use of these generalized structures

can then be assumed by the library modules. These structures serve

to integrate the modules and, in doing so, provide a framework

within which the analyst can model the operational system to be

scheduled.

A major activity in the second part of this study was to de-

fine the standard data structures in a manner that was nonrestric-

tive in terms of modeling flexibility. A prime consideration in

structure definition was unambiguous interpretation of input and

output information for a scheduling problem by problem analysts

or by the logic of the problem library modules. It was discov-

ered early in the study that basic system descriptive informa-

tion was hierarchically related and that this same information

separated rather clearly into three types of tree structures that

we labeled $OPSEQ (a compression of operational sequence) $PROCESS,

and $RESOURCE. In the second part of the study, the details of

these structures were refined iteratively as the specifications

for the module library became specific.
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The final standard data structures are shown in Fig. A-9. To

illustrate the evolution of these structures that transpired, con-

sider the portion of the tree $RESOURCE with the label ASSIGNMENT.

This substructure has been designed to record the results of exe-

cuting scheduling decisions that assign the resources to jobs for

particular intervals of time. The substructure design must accom-

modate the fact that the resource in question might be a single

item or it might be a pool. Specifically, the resource might be

CREWMAN JONES or it might be the pool called ASTRONAUTS. A sched-

uling problem could require a mixture of pooled resources and item

specific resources. Thus, a single standard structure for $RESOURCE

must be designed only after a careful categorization of the possi-

ble model variations has been accomplished.

This particular study activity resulted in a set of definable

characteristics for general problem models that must be consid-

ered in realistic scheduling problems. These definitions along

with the standard data structures that accommodate the descrip-

tion of those characteristics are collectively called the general

operations model. Table A-12 summarizes the results of this

analysis. The terminology "explicit descriptors." is used to dis-

tinguish between resources whose descriptors do not change after

being assigned and used in a job, and resources whose descriptors

change as a result of being assigned and used in a job. An ex-

ample of the latter is the descriptor LOCATION, which may be

changed by scheduling and executing a job called DELIVER_PAYLOAD.
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$OPSEQ

(OPSEQ NAME) (OPSEQ NAME) (OPSEQ NAME)

(PROCESS OR (PROCESS OR (PROCESS OR ROCESS
OPSEQ NAMB OPSEQ NAMB OPSEQ NAME)

(NAME) (NAM (NAMEl
TYPE TEMPORAL .ELATIONS ALTERNATIVES

("PROCESS" | "OPSEQ") (SEE GEN RAL SUBSTRUCTURE)

R DURATION REQUIRED RESOURCES RESOURCE ALITERPNATIVES RESOURCES GENERATED RESOURCES DmELETED PROCES TYPE

$RESOURCE (VALUE f'SPLITABLA j "SPUITABWL)

(TYPE) ( TYPEI (TYPD I

EP R ODUC16I L 2 0,' (TYPE) (TYPE) (YPE)

EI IN INAME) (NAME) NAM EI ( fYPD ( LIP)

NAM (NAMD (NAME)

) ? s

INITIAL TIME INITIAL PROFILE ( PARAMETEP) SSIGNMENT CLASS

(VA (VALIIFI 'PECIFIC" "POOLED")

INTERVAL DEoSCRIPTORS

START END Os PC G Op

*Joe ID PROBLEM NAME DESCRIPTORS ( INTERVAL PROCESS OPSEQ VU) (VA

(VA UE) (VALUE) (VALUE) ALUEI

INITIAL FINAL

) 
S TA RT  

()END WANT TY )START END

(VALU(VUDVALUE) (VAUE) VA ) VA E)

QUANTIT ()ARAM III( ) ...
-INITIAL F INAL (VALUE) (V IVAWEI (VAUE)

QUANTITY (PARAMETER) *so e * o

Fig. A-9 Standard Data Struct res
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Table A-12 Characterization of Problem Models

RELATIONS BETWEEN JOBS (TEMPORAL RELATIONS)

Simple Predecessors

Start of Job B > End of Job A

Generalized Temporal Relations

t Start = Start +Start of Job B Start of Job'A Constant
End > End -

RELATIONS BETWEEN JOBS AND THEIR REQUIRED RESOURCES

Job A Requires

O n e  P o o l e d  No Explicit Descriptors

More Than Pooltem-Specifi) Resource with Changeable Explicit
One Descriptors

or it requires any combination of the above for an interval of

time that may or may not be the entire duration of the job.

The ASSIGNMENT substructure of $RESOURCE must be sufficiently

flexible to handle the assignment information for any type of re-

source. Table A-13 shows an assignment structure for one pooled

resource that has been partitioned several ways, each with a unique

set of explicit descriptors and one item specific resource. It

can be seen that both resource types are accommodated by the gen-

eral structure shown in Fig. A-9.

Analyses were conducted that led to other similar general

structures within $PROCESS and $OPSEQ. In addition, the output

structures of the library modules were developed to have maximum

compatibility with the three structures already discussed. The

structure of $SCHEDULE shown in Fig. A-10 is an example of a

specified standard structure that is obviously not an input to
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Table A-13
The Assignment Substructure of $RESOURCE for Pooled and

Item-Specific Resources

$RESOURCE
PERSONNEL

CRANE OPERATORS
QUANTITY - 6
CLASS - POOL

ASSIGNMENT

DESCRIPTORS

INITIAL
QUANTITY - 2

ist Partition
of the Pool

Pooled FINAL

Resource QUANTITY - 2

Assignment LOCATION - DOCK

INITIAL
QUANTITY - 1 2nd Partition

FINAL of the Pool

QUANTITY - 1

FINAL 3rd Partition
QUANTITY - 3 of the Pool

INTERVAL
START - 2
END - 12

JOB ID - JOB 01
CRANES

CMOBILE 09
LOCATION - DOCK
ASSIGNMENT

INTERVAL
START - 14

Item Specific END - 20

Resource JOB ID - JOB 02

Assignment CMOBILE 13
LOCATION - DOCK
CAPACITY - 50

CFIXED 07
LOCATION - DOCK
ASSIGNMENT

INTERVAL
START - 2
END - 12

JOB ID - JOB 01
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(JOB ID) (JOB ID) (JOB IDI

MJOB TYPE OPSEQ INTERVAL PROCESS RESOURCES

("SPLITTABLE" "NONSPLITTABLE") (VALUE) (VALUE) (VAUEl

START END ()TYPE)
(VALUE) (VALUE)

(NAME) (NAME)

DESCRIPTORS INTERVAL

SSTART END

(VALUE) (VALUE)

INITIAL FINAL

QUANTITY (PARAMETER) 0 00 0 0

(VALUE) (VALUE) (VALUE) (VALUE)

Fig. A-10 $SCHEDULE Structure
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a scheduling program, but which should be standardized to facil-

itate the use of modules that check constraint violations or com-

pute resource profiles. It can be noted that $SCHEDULE, $PROCESS

and $RESOURCE have certain substructures that are identical. This

is a result of recognizing that scheduling logic will consist of

grafting or inserting portions of one tree on another, a proce-

dure that is simple if the structures are common.

Other standard data structures are discussed in Volume II of

this report. Volume II provides a complete description of how

the structures accommodate the problem model variations identi-

fied by the analysis just described.

4.6 ASSESSMENT OF IMPLEMENTATION FEASIBILITY OF SPECIFIED MODULES

To provide data on the scope of the effort required to imple-

ment the modules being specified, selected modules were programmed.

A range of functional characteristics was considered in selecting

the modules to be coded. Simple bookkeeping-type functions that

should be easily programmable in PLANS are represented by the

modules shown in Group I of Table A-14. To verify the adequacy

of the PLANS language, and the functional specifications as written,

all the modules in Group I were coded in PLANS.

The modules shown in Group II of Table A-14 are typical of

the more complex functions specified for the PLANS module library.

Coding was generated for the modules of Group II in order to bal-

ance the implementation assessments gained while coding the low-

level modules of Group I.
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Table A-14 Modules Coded for Implementation Feasibility Analysis

GROUP I ELEMENTARY MODULES

DURATION Calculated the duration of any standard (simple or multiple)
interval

ENVELOPE Calculates an interval that is the smallest cover of a given

standard (simple or multiple) interval

ORDER BY PREDECESSOR Produces a list of jobs with the property that all jobs appear

in the list only after all their predecessors have appeared;

i.e., produces a nonunique technological ordering.

WRITE ASSIGNMENT Writes a single assignment for a resource and adds the assign-

ment node in chronological order in $RESOURCE.

UPDATE RESOURCE Records the scheduling of a schedule unit (job) by writing as-

signments in $RESOURCE for all resources used in the schedule

unit.

UNSCHEDULE Deletes assignments from $RESOURCE for all resources associ-

ated with a specified job to be deleted.

RESOURCE PROFILE Determines the profile of a resource pool over a given time

interval for both "normal" and "contingency" levels. Deter-

mines the profile of the assigned portion of a pool and gives

the jobs to which the resources are assigned.

GROUP II HIGHER-LEVEL MODULES FROM OPERATIONS MODEL

NEXTSET Determines a set of specific resource items to meet the re-

quirements of a job and permit the earliest possible execution

of that job.

Determines future times the job requirements can be met with

any combination of appropriate resource types.

GENERATE_JOBSET Creates individual jobs for each occurrence of a process spec-

ified explicitly or via an operations sequence in $OBJECTIVES.

Merges information contained in $OBJECTIVES $OPSE and $PROCESS

into a tree called $JOBSET. Jobs in $JOFSET are ready for the

decision algorithms to make explicit assignments.

GROUP III ALGORITHM MODULES

MIXED INTEGER PROGRAM Solves linear programs that contain both continuous and inte-

ger-valued decision variables.

INTERGER PROGRAMI Solves the linear form of the binary decision-making problem.

RESOURCEALLOCATOR Allocates resources to jobs to satisfy all resource con-

straints and heuristically produce a minimum duration sched-

ule.

RESOURCELEVELLER Reallocates resources to smooth the usage of resources while

maintaining schedule constraints.
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Finally, several algorithm modules (Table A-14, Group III)

were written to assess the effort required to implement sophisti-

cated solution techniques. The results of these three coding

analyses are summarized.

1) The adequacy of PLANS for implementing nonmathematical sched-

uling routines was verified.

2) The functional specifications for the modules coded were spe-

cific enough to provide a clear indication of what was needed,

but not so detailed as to preclude options for detailed logic

design. This conclusion was reached by using personnel to

design and code modules in Groups I and II who had not previ-

ously been associated with study. Before starting the design

and code exercise, they had no previous knowledge of PLANS or

the operations model conventions.

3) Several extensions to the functional capabilities of the speci-

fied modules should be expected during implementation. It was

found that careful logic design could provide output informa-

tion that was additional to that specified without increasing

the complexity or efficiency of the logic internal to the

module. For example, the NEXTSET specification called for the

return of the earliest availability window in which a resource

set would be available to meet specified requirements. The

logic needed to determine this earliest window also deter-

mined all other later windows in which the requirements could

be met. This and other examples, which resulted from the im-

plementation assessment task, lead to the conclusion that a
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careful implementation effort should produce functional capa-

bilities in excess of those specified.

+) Mathematical programming techniques can be expected to re-

quire greater implementation efforts than other relatively

sophisticated scheduling modules. This results not only from

the complexity of the mathematical logic but also from the

need to use the most advanced mathematical programming meth-

ods to maximize the problem dimensionality that can be han-

dled. Programmed in this study was a technique suggested by

Geoffrion to adapt the well-known integer programming tech-

nique employing surrogate constraints to the problem decom-

position derived by Benders. Computational implementation of

this approach has not been reported elsewhere; detailed docu-

mentation of this program will appear subsequently. It is

important to note here, however, that the development of state-

of-the-art mathematical programming routines is sufficiently

complex to suggest that a careful analysis of usage require-

ments be made before a general implementation effort is initi-

ated.

5) PLANS provides appropriate capabilities to program project

scheduling routines. Efforts required to implement such rou-

tines were less than anticipated.

To provide insight on how the various specified modules would

Lntegrate and to verify the adequacy of the standard data struc-

tures, a demonstration program was designed to solve a typical

3huttle flight scheduling problem. The architecture of the pro-

;ram is illustrated schematically in Fig. A-11. The implementation
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of the demonstration problem was taken to a point where input data

structures were defined and executive logic functionally specified.

The analysis confirmed implementation feasibility for a program of

this nature.

Inputs Defining Single
Flight Network

- $OPSEQ
- $PROCESS
- $RESOURCE

I

Translate Inputs Assign Start Allocate

Inputs Defining Particular into Single Times for All Specific

Flight Scheduling Problem Problem Statement Activities Resources
Using Project to Scheduled FINISH

e.g., Traffic Model

$OBJECTIVES e.g.. $JOBSET HEURISTIC SPECIFIC
INPUT bATA SCHEDULING RESOURCE
INTERPRETER PROCESSOR - ALLOCATOR

Fig. A-11 Demonstration Program Macrologic

It was discovered, however, that the $OPSEQ structure and the

GENERATE JOBSET module should be extended to incorporate informa-

tion on "commonality" constraints. Commonality is a term that

refers to coupling of resource allocation decisions across jobs.

For example, if Job 32 and Job 33 each require an orbiter, and
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the orbiter chosen must be the same orbiter, then a commonality

constraint exists. This constraint appropriately belongs in the

$OPSEQ standard data structure since it concerns information re-

lating jobs to one another.

The formulation of a demonstration problem served to verify

implementation of a functionally integrated program using PLANS

routines and PLANS executive logic. It also served to extend

capabilities of specified modules and data structures to make

them cover more of the functions required in a typical problem.

4.7 ASSESSMENT OF METHODS FOR AUTOMATED ALGORITHM APPLICATION

The approach to identifying appropriate logic for module spec-

ification used in this study placed early emphasis on elementary

and fundamental modules. An ultimate goal has been to progress

upward in level, sequentially addressing more and more automated

scheduling capabilities. An analysis on how realistically com-

plex schedules are successfully generated leads to a single ines-

capable conclusion: Human judgment is always present in the over-

all decision-making process if the resulting schedulings are

realistic. This fact suggests caution in proceeding toward greater

automation.

The analysis performed in the task described here was limited

to a consideration of how current project scheduling methodology,

which can in fact handle realistic dimensionalities, can be used

in solving problems with greater model generality than is directly

accommodated by project scheduling models. A scenario of human/

computer activities was developed to which subsequent analyses
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can provide greater detail. The overall approach to heuristic

scheduling using project scheduling methods consists of three

major procedural elements:

1) Resource constrained project scheduling applied to limited

problem descriptions;

2) Manual scheduling for fine tuning and resolving low-dimen-

sional complex conflicts; and

3) Detailed resource tracing considering resource descriptors.

Table A-15 displays the expected frequency, problem size and in-

terface needs for these three elements.

Table A-15 Strategy Characteristics

Expected
Frequency Problem

Strategy of Use Size Interface

Project Scheduling Very Often 0(103) Batch

Interactive
Perturbations Very Often 0(10) Interactive

Detailed Resource
Tracing Occasionally 0(102) Batch

The project scheduling modules could easily be a mainstay of

a scheduling system especially during the early phases of a new

operation. Their forte is handling large problems of a simple

format to give the scheduler a handle on an unknown situation.

The quantities of data used and presented point to batch rather

than interactive computer interfaces.

Interactive scheduling, employing user intuition and low level

modules to schedule a small number of jobs is expected to occur at

least as often as large project scheduling and probably more often

as the operations become more routine or well-defined. In this
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case a basic framework schedule exists and the man is resolving

real-time conflicts or those which are difficult to express to the

computer. Experience shows that once a man is familiar with the

operation he is scheduling, he can resolve most conflicts if he

can see the effect of his decisions. Interactive computer inter-

faces would greatly facilitate this process.

Detailed resource tracing may be necessary to ensure that all

jobs needed to guarantee that proper resource states are in the

network, or to validate a schedule. However, detailed resource

tracing should be avoided most of the time for two reasons. First,

the changing of states for a particular-resource can usually be

handled using jobs (e.g., job: receive payload rather than resource:

payload, state: received..) Second, the generation of schedules

that are too detailed ignores the fact that the future is never

exactly what is expected. Such schedules limit the individual

scheduler freedom to handle day-to-day crises and special alloca-

tions. The capability of the individual scheduler is a consid-

erable resource in itself.

The analysis conducted under this task produced basic concepts

that led directly to a preliminary concept for a man-computer

scheduling system.. This concept is illustrated in Fig. A-12. The

utility of such a system depends heavily on the llocation of re-

sponsibilities between the computer and the human scheduler.. Thus,

a set of specific test objectives. emerged; i.e., evaluate the per-

formance of both the man and the computer system in the roles in-

dicated in Fig. A-12. In particular, what functional elements
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l Computerized ElementI c Create Jobs for
OD All Activities Human Interface

Start -- to be Scheduled

Unsuccessful or
Undesirable

Assign Pooled
Read Standard Resource Levels, Iterate Perform Item
Model Data Specify Known Specific Resource
From Data Base Start Times Allocation (Custom- Built Using Low

Level Modules)

Modify Standard Schedule All Activities
Data for Specific Using Project Scheduler
Problem

Examine Integrated
Timeline and

Resource
Undes. Allocation Finish

Examine Resource
Usage Profile
Resulting from
Scheduling Unacceptable

Satisfactory

Fig. A-12 A Man-Computer Scheduling System Concept



belong in the iteration paths? It was decided to build the dem-

onstration program with .the interaction points indicated in Fig.

A-12. Specific tests could then be run on proposed automated

problem reformatting logic and on tutorial-type modules that might

be placed in the feedback paths of the man-computer system concept.

These tests will be executed in future analyses.
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